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A~~act-This paper discusses an analytical investigation for the random entranee region heat transfer of 
a fluid in a parallel plate channel. The environment surrounding the channel experiences randomly 
varying temperature oscillations. The mathematical analysis utilized is centered on a lumped formulation 
in the transversal direction of the channel. Computed results provide the statistical parameters such as 
the mean temperature distribution and the variance distribution for a group of heat-transfer situations. 
Estimates for the random behavior of the fluid temperature can be deducted from a set of figures 

involving several examples. 

NOMENCLATURE 

half-width of channel ; 
function defined in equation (16a) ; 
function defined in equation (16a); 
overall heat-transfer coefficient ; 
fluid thermal conductivity ; 
convective parameter, Mb/k; 

time; 
fluid temperature; 
ambient temperature; 
entrance temperature at x = 0 and initial 
temperature in the channel ; 
mean fluid velocity; 
dimensionless velocity parameter, iib/cc; 

covariance of fluid temperature in 
equation (28); 
function defined in equation (29); 
variance of the ambient temperature; 
coordinate. 

Greek symbols 

fluid thermal diffusivity ; 
Dirac’s delta function ; 
dimensionless coordinate, x/b; 

coordinate for the covariance in 
equation (28); 
dimensionless fluid temperature, T/T, ; 
mean fluid temperature ; 
dimensionless ambient temperature, T,/T, ; 
mean ambient temperature; 
temperature deviation, t?, - &, ; 
dimensionIess time, at/b2. 

INTRODUCTION 

THE PROBLEM of unsteady thermal convection in 
internal flows has been widely studied as evidenced in 
[l-13] and the references cited therein also. Con- 
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ventionally, these publications deal with the heat- 
transfer analysis based on the use of deterministic 
functions of temperature. Naturally, this is the case 
when the effects of random velocity and/or random 
temperature guctuations are virtuaily negligible 
when compared with mean values, and therefore 
local variances are relatively small. The solutions to 
this class of problems are characterized by a single 
parameter, the mean temperature. However, the 
randomness of temperature becomes increasingly 
significant when the velocity or temperature fluc- 
tuations are large enough, and ultimately may attain 
values wherein the contribution of these fluctuations 
can no longer be ignored. Undoubtedly, in order to 
get confidence limits for this class of problems, the 
mean temperature has to be linked to its correspond- 
ing variance. 

One paper by Perlmutter [14] has been reported 
in the .-literature deaIing with the heat-transfer 
estimate of a fluid in a parallef plate channel having 
randomly changing velocities. The solution method 
is centered on the application of model sampling and 
the use of Monte Carlo techniques. 

In most heat-transfer studies, fluid temperatures 
possess a smooth behavior which can be adequately 
described employing deterministic functions. This 
specification becomes less realistic and almost im- 
possible to impose as temperature variances become 
large. This may be the situation for calculating the 
heat loss from a channel wherein the random 
character is due to: (a) random velocities [14] ; (b) 
random con~ntrations [15] ; or (c) random thermal 
conditions. The latter can be caused by exposing the 
channel to an environment whose temperature 
changes abruptly with time due perhaps to un- 
expected weather conditions or any other external 
phenomenon. 

The purpose of this paper is to describe a 
theoretical investigation concerned with the influence 
of randomly varying ambient temperatures on the 
heat-transfer performance of a fluid flow through a 
parallel plate channel. In the analysis, the governing 
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energy equation is simplified by way of using a hypothesis that the ambient temperature e,(r) is a 
lumped formulation in the nonaxial direction. Con- stationary normal process with mean and covariance 
sequently, the random contribution of the environ- given by the relations (see Appendix 1) 
ment temperature appears in the energy equation 
characterizing the thermal process. -qW)l = &.l (4) 

and 

STATEMENT OF THE PROBLEM E[%&)t?,(r)] = W&z-r’) (5) 

This problem is concerned with the heat transfer respectively. In these expressions, 4, is the mean 
in a hydrodynamically developed fluid flow in a flat ambient temperature, 8, is the temperature deviation 
conduit. The essential feature of the study deals with %,--%*, W is the variance of the ambient temperature, 
the calculation of the time-dependent fluid tempera- 6 is a Dirac’s delta function and finally E denotes the 
ture in the axial direction. This dependency is caused expectation. 
by a random fluctuation of the ambient temperature We need to calculate the first and second moments 
surrounding the conduit, while the remaining con- (mean and covariance) only, because the governing 
ditions are maintained constant. A lumped formu- system is linear and therefore %(q,r) becomes a 
lation in the transverse direction, leads to an normal process. In terms of symbols, &,z) is used 
energy equation written in dimensionless form as for the mean at q and additionally u([, q, t) is used 
follows for the covariance at any two points 5 and ‘I, 

respectively. 

where s,(t) denotes the random variation oi the 
equation 

ambient temperature. This equation is based on the 
assumptions of constant fluid properties and negli- 
gible frictional dissipation of energy. The participating subject to the conditions 
variables and parameters are chosen according to 

%(O, t) = 1 

q=; 
cd 

z=- fj 2 f &cc, z) = finite (7) 

b2 e iQ,O) = 1. (S) 

~=“b 
a 

ljLF The solution of equation (6) is divided in two parts 

while the rest of the variables appear defined in the 
via the superposition principle, i.e. 

Nomenclature. 
It should be noted that equation (1) contains the 

%(ar) = ~,(~~+~~{~?,~) (9) 

axial conduction term. However, the intention of the such that the steady state component t?,(g) is 
present paper is not related to the exploration of the obtained from 
effects of conduction in the longitudinal direction. 
This approach is done with the sole purpose of (10) 
facilitating the mathematical analysis to be presented 
in the next section. Generally, the real contribution d,(O) = 1 (11) 
of axial conduction is reflected only when equation 
(1) is applied to a domain that accommodates the and the unsteady state component %,(q,s) is calcu- 

distorted temperature profile upstream of the origin. lated from 

The situation involving longitudinal conduction is 
insignificant when P, > 50 for constant wall tempera- 
ture in a circular tube as suggested in [16, 171. This 
value is even lower and depends upon the cooling l&(0,%) = 0 (13) 
level for conditions involving external convection at 
the tube walls [lS]. k&,0) = l--%,(17)- (14) 

The boundary and initial thermal conditions At this point, it is easily seen that the expression 
associated to equation (1) are expressed as follows 

8, = QO+(l--B,)exp 
il 

U-(U2+4N)i’2 : 
f3(0,5) = 1 -- 

(2) 
2 

%( co, z) = finite 1.i r? (15) 
%(iJ,O) = 1. 

SOLUTION PROCEDURE 

(3) 
satisfies equations (10) and (11). 

The solution %,(q, z) can be readily determined by 
introducing the transformation 

The temperature field %(a~) will be obtained from @)2 =~(~)g(~)~*(~,T) (161 

the statistics of the problem. It is based on the into equation (L?), where the functions are 

First, the mean will be evaluated by solving the 
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designated by in conjunction to the conditions 

f(r) = exp[(N+Tir] g(q) = exp( -yqi. (l6a) 6,(O,T) = 0 (18) 

As a result. the new equation in terms of 6, is given 6,(r1,0) = Y(rl)[l -&(tl)]. (19) 
by 

aoz a%* 

?T 
- -Yy (17) 

Hence, the solution of this system can be written 

01 
immediately from [ 19, 201 as follows 

But, since 

(20) 

6*(?/,0) = (l-0,) 1 -exp 
( rl 

~~!~*:4N”“]‘lj)exp(~ q) 

then, equation (20) can be arranged as 

a,(,. 5) = &$ ~~~~~~e~p(-~)-exp[-~!‘~z~‘]}~~~p~-’~~]_eXp[_~]~dn~~ 

(21) 

Once the integration process is performed, the previous equation can be condensed in the following manner 

C))2(~?,~) = ‘~~~!exp(~~,-Y,ljl +erf~~(r~~]~-expiUir+Yl]jl -erf~~]) 

-exp 

(22) 

where 

err(r) = ?. 
s 

x 

(7rPQ o 
exp( - r’)d.u. (23) 

Therefore, the original variabies arc recovered using the inverse transformation expressed by equation (16). 
This, of course, enables conversion of equation (22) into 

d2(q,T)= t+(exp(-Nr){l+erf[!&$]} 

-exp(- Nr+ L:q){ 1 -erf[$$]{ 

(24) 

Second, the covariance I:((. q, 5) constitutes an integral part of the analysis and will be calculated by solving 
the equation 

1%: _- = 
2s (25) 

whose detailed derivation is presented in Appendix 2. The initial and boundary conditions imposed on this 
equation are written as 

c(5, rl, 0) = 0 (26) 

~(0, ~1. T) = 0 or LI(<,O, r) = 0 (27) 
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where the covariance is described by the relation 

r(<v%r) = E([B(f,T)--(5,T)][e(~,r)-B(rl,z)]) 

or 

(28) 

Basically, the solution of equation (25) will be attempted by invoking the following transformation: 

V(& % r) = f%)G7(&7(@‘(& n, r). 

Accordingly, equation (29) is converted to 

(29) 

av a2v av -= 
a7 F + p + N2wf2 (T)dt)g(rl) (30) 

together with the initial and boundary conditions 

V(S,r,O) = 0 (31) 

V(O,q,r) = 0 or V(<,O,z) = 0. (32) 

Thefunction V(&n,t),satisfyingthesystemofequations (30)-(32),may beobtaineddirectlyfrom[f9Jandwritten 
as follows : 

Hence, carrying out the integration process for both indefinite integrals, equation (33) may be rearranged as 

(34) 

where erfc (x) = 1 - erf (x). 
As a final step, the combination of equations (16a), (29) and (34) provides the complete expression for the 

covariance: 

(35) 

NUMERKAL RESULTS 

This study involves four independent parameters: 
do,, the mean of the ambient temperature; W, the 
variance of the ambient temperature; N, the con- 
vective parameter and U, the dimensionless velocity 
parameter. Because of the range of variation of each 
parameter, computations are made for a limited 
number of cases; i.e. 0, = 0.2 and 0.5, W= 0.4, N 
= 10, 100 and 500, and U = 100. The rationale for 
the use of a large value of U is that the complete role 
of the axial conduction must not be covered by the 
present solution. Additionally, the numerical values 
assigned to the governing parameters are expected to 
represent a wide spectrum of physical situations, 
where the emphasis is concentrated on those in- 

timately associated to the random nature of the 
problem, such as da, Wand N. 

The average temperature profile &r,r) is calcu- 
lated from the resulting combination of equations (9), 
(15) and (24). Likewise, the companion physical 
quantity, the variance v(n,r,rt) of the temperature 

T0 
I - , 

Y b 
U x 

T, 
L I ------------- 

t = I 

Fro I. Coordinate system for the problem. 
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profile is computed from equation (34) for the to the environment. It should be stressed that D 
condition < = q. In this last equation, the integration shows a minor increasing behavior with both 
procedure over time is carried out by means of the position and time, and, therefore, the heat-transfer 
Simpson’s rule. mechanism is basically deterministic. At this level of 

FIG. 2. Mean and variance of the temperature profile for N = 10 and 6, = 0.5. 
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FIG. 3. Mean and variance of the temperature profile for N = 100 and 8, = 0.2. 
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FIG. 4. Mean and variance of the temperature profile for N = 100 and 6, = 0.5. 

V 

Figure 2 is an example of a typical solution for low cooling, the temperature fluctuations around the 
cooling to the environment represented by N = 10 mean may be considered as a secondary effect. 
and i?,, = 0.5. Both quantities 8 and II do not change The variation of the average temperature and its 
much with position due to the small heat exchange variance with the axial location rl and time 7 is 
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illustrated in Figs. 3 and 4 for N = 100 and fi, = 0.2 and 6 for the same ambient temperatures of 8, = 0.2 
and 0.5 respectively. Here, due to a higher cooling, and 0.5. These figures correspond to a limiting case 
local temperature drops are more pronounced. These and depict a sudden drop of the average temperature 
figures reflect that for equal values of q and 7, the near the channel origin and eventually reach the 
local temperatures tend to decrease as fia increases. average equilibrium temperature 6,. In addition to 
Conversely, variances are not altered by 0, and this, the associated numerical values of the variances 
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FK. 5. Mean and variance of the temperature profile for N = 500 and 8, = 0.2 

T =0.03 
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FIG. 6. Mean and variance of the temperature profile for N = 500 and 6, = 0.5. 

remain constant. For a fixed position, these vari- 
ances tend to increase with time until they reach a 
steady-state value showing that temperature fluc- 
tuations are significant for N = 100. Alternatively, 
this behavior may be explained in a more concise 
manner, stating that as time progresses, a band 
representing the confidence limits for temperature 
becomes wider. 

increase abruptly near the entrance as a function of 
time, and exhibit the same pattern regardless of the 
value of 8,. 

The heat removed from the channel flow to the 
surrounding medium may be determined using the 
results presented in this set of figures. 

CONCLUDING REMARKS 

Finally, the influence of a very high cooling The results confirm that over the range of 

process characterized by N = 500 is drawn in Figs. 5 conditions covered in this work, conventional sol- 
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utions have a predictive accuracy for low values of 
the convective parameter. As the magnitude of the 
convective parameter increases, the thermal field 
needs to be described by both the mean and the 
variance. Moreover, for fixed coordinate and time in 
the channel, the variance increases as the convective 
parameter increases. 

It is recommended that further work be done to 
examine the effects of other phenomena in the 
framework of random heat transfer. 
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APPENDIX 1 

Statistical properties of the ambient temperature 
The properties of a random process x(t) are determined 

by carrying out some experiments and applying the 
methods of data analysis [21]. The mean i(tl) of x(t) at 
some time t,, and the covariance u(t,,t,) at two times, tt 
and t,, are computed by 

(l-1) 

and 

where the RHS of equations (l-i) and (l-2) represent the 
ensemble averages of sample functions at fixed instants. 
When x(tl) and v(t,,t,) do not depend upon the fixed 
instants, we may express a@,) and u(t,,t,) as P and u(t, 
- t2), respectively. In this case, x(t) is said to be stationary. 

If x(t) is stationary, and also, the statistics do not differ 
when computed over different sample functions, then x(t) is 
said to be ergodic. For this case, we may determine the 
statistics by performing time averages over a single sample 
function. That is, 

1 T 
j, = lim - 

s T-.mT 0 
x,(t)dt (l-3) 

u(t, -t2) = u(A) 

=&_ T 
f ~-rnT o 

x,(r)x,(t+A)dt-iz (l-4) 

where Tand A denote time and E, -rZ, res~tivefy. 
The covariance, denoted by equation (5), contains the 

Dirads delta function and sometimes this is called a white 
process. Although we assume a white process for the 
ambient temperature, we can easily extend the procedure 
discussed here to more general classes because general 
processes (for example, the Markov process) are generated 
from a white process. 

APPENDIX 2 

Derivation of the covariance equation 
The partial derivative of u(& 9, r) with respect to time is 

given by 

From equations (1) and (6), we have the differential 
equation for B written as 

P-2) 
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Substituting equation (2-2) into the second term of the satisfying the relations 
RHS of equation (2-l) yields: 

G(& 5’, 0) = S(5 - r’) (2-5) 

second term = E 
$+I, T) 

I_- 
atl 

aG(5, r’, r - 2’) = 
az i 

$- CJ$-N 
> 

G(t,t’,r-T’). (2-6) 
_. 

where @(r, r) is evaluated by [22] : J ! dr’ G(& r’, r-r’)N’W&(r-r’)d< 
0 0 

S J m 
N’W 

&, T) = dr’ G(& r’, r-t’)N&(z’)dt’. (2-4) = -. 2 
0 0 

Ultimately, the first term of the RHS of equation (2-l) wili 
Here, the function G represents the temperature caused by 
an instantaneous source acting at an instant T’, and 

be evaluated in the same manner. Consequently, equation 
(2-l) becomes equation (25). 

TRANSFERT ERRATIQUE DE CHALEUR DANS UN CANAL PLAT AVEC DES 
VARIATIONS DANS LE TEMPS DE TEMPERATURE AMBIANTE 

R&un&--Cet article pr&sente une etude analytique du transfert erratique de chaleur a Tentree, dun fluide 
entre deux plans paralleles. L’environnement est sujet 21 des oscillations de temperature variant au hasard. 
L’analyse utilisee est cent& sur une formulation localisle dans la direction transversale. Des resuitats du 
calcul foumissent les param&res statistiques tels que la distribution de temptrature moyenne et la 

distribution en variance pour un groupe de situations. Des estimations de I'irtat erratique de la 

tempkrature du fluid peuvent etre deduites dun ensemble de configurations qui concernent plusiers 
exemples. 

WARMEUBERGANG IN FLACHEN KANALEN BE1 ZEITLICH 
STOCHASTISCHEM VERLAUF DER UMGEB~GSTEMPERATUR 

Z~rn~nfa~un~-Diese Arbeit behandelt eine analytische Untersuchung des stochastischen Wlrme- 
iibergangs eines Fluids im Eintritts~reicl~ eines Rechteckkanals. Die Umgebung des Kanais erfahrt 
willkiirlich ver%nderliche Tem~ratur~hwankungen. Die angewandte mathematische Methode basiert 
auf einem Knotenmodell in Querrichtung des Kanais. Die errechneten Ergebnisse hefern die statistischen 
Parameter wie die mittlere Temperaturverteilung und die Verteilung der Varianz fiir eine Gruppe von 
Warrneiibergangssituationen. Annabmen iiber das Zufallsverhalten der Fluidtemperatur konnen mit Hilfe 

einiger Abbildungen, die mehrere Beispiele enthalten, vorgenommen werden. 

TEfLl006MEH B HJIOCKMX KAHAJIAX HPM CJIYL(AtiHOM M3MEHEHMM 
BO BPEMEHM TEMflEPATYPbl OKPY~AIO~EH CPEflbl 

ARHOT~UHS- B CTaTbe paccMaTpnsaeTcr aHannTnYeCKoe nccnenoBaHue cnysaliioro TennOO6MeHa 

ZWIKOCTH a0 BxonHol o6nacTn nnocKonapannenbHor0 icaiiana. OKpy~a~mn~ iranan cpeaa Ifcnbt- 

TblBaef CnysatiHble Kon~aHn~ TeMrIepaTypbl. flaeTcu o6utaR Monenb npolrecca nepenawi Tenna 

no ce~ewo KaHana. Ha ~HoBaH~~ PaC'ICTHbIX 3HareHttZi ,&%I HeCKOJIbKHX PaccMaTp~BaeMbtx 

cnyvaes nonyqeHbi TaKne cTaTncTwecK5ie napaMeTpbr, KaK cpennee pacnpenenefine -reMnepaTyp H 

arzcnepccto~~oepacnpenenea~e.Cnyua~~b~ZixapaKTep~3~e~eHaaTe~nepa-rypbt~0~~0npOCne~wTb 

Ha PSiDepWCyHKOB. 


